Managing data for Curiosity, fun and profit

Rajeev Joshi
NASA / Jet Propulsion Laboratory

3 missions in one

Cruise

EDL

Entry, Descent & Landing

Surface

Avionics

Prime Computer Backup Computer

direct-to-Earth rover-to-orbiter
low bandwidth high bandwidth
|00s of bps 2 Mbps

- Cruise
' 8.3 months

. . .
- ® .
e . .

~*Mars

. A Wence Laboratory -

//;_Ea‘nh B \) . N
./ “Venus \\ '

DISTANCE FROM EARTH: 78,750,346 km - DISTANCE COVERED: 322,254,990 km
DISTANCE TO MARS: 50,780,906 km DISTANCE TO GO: 244,811,580 Km
TIME TO LANDING: -126:09:35:38 - CURRENT UTC: Apr 1, 2012 §39 P

“Realtime” telemetry

Periodic measurements (“EHA”)

N [

CPU Usage

L e SSANALS

Discrete event log (“EVRs”)

J ErT
2012-206T00:35:07.668
|2012-206701:18:43.038
| 2012-206700:35:07.668
| 2012-206705:11:10.823
I 2012-206T00:35:07.668
| 2012-206701:18:43.038
I 2012-206T00:35:12.146

SCLK
’0396361199.50137
"0396361199.50137

"0396361199.50437
"0396361199.90437
"0396361208.13908
"0396361208.13908

SOURCE

FSWRT

FSW REC

FSWRT

FSW REC

FSWRT

FSW REC

TYPE
EVR DIAGNOSTIC
EVR DIAGNOSTIC

EVR DIAGNOSTIC
EVR DIAGNOSTIC
EVR WARNING_LO

Streamed continuously
whether or not anyone is
listening

Percentage
100
80

60
R

20
4 0

DATA

Delivering 3 bytes of VC-1 uplink data targeted for String A on S/C ID 76.

Delivering 3 bytes of VC-1 uplink data targeted for String A on S/C ID 76.

Dispatching immediate command SEQ_LIST: stcode=0x8B1C, immediate command number=33, secol
Dispatching immediate command SEQ_LIST: stcode=0x881C, immediate command number=33, secol
Successfully dispatched immediate command SEQ_LIST: stcode=0x8B1C, immediate command numb
Successfully dispatched immediate command SEQ_LIST: stcode=0x8B1C, immediate command numb
Task [context |d = TASK_SEQ_CTRL_ENTRY] did not report in by the squawk threshold [6] seconds; th

| 2012-206T05:11:06.345
| 2012-206700:35:12.146
| 2012-206705:11:10.823
| 2012-2067100:38:38.152
| 2012-2067100:38:38.152
| 2012-2067100:38:38.152
| 2012-2067100:38:38.152

0396361208.52693
0396361208.52693
0396361412.84778
0396361412.84778

EVR WARNING_LO

Task [context Id = TASK_SEQ_CTRL_ENTRY] did not report in by the squawk threshold [6] seconds; th
Successfully completed immediate command SEQ_LIST: immediate command number=33.
Successfully completed immediate command SEQ_LIST: immediate command number=33.
Current-Attitude-Error-Correction-Vector in 12000 (rad) = [1.30333e-04 -5.55175e-07 -6.46999¢-06]
Current-Attitude-Error-Correction-Vector in J2000 (rad) = [1.30333e-04 -5.55175e-07 -6.46999¢-06]
Attitude quaternion q_Aka_lJ = [3.45925e-01 -6.44945e-01 -2.01949e-01 6.50844e-01]

Attitude quaternion q_Aka_lJ = [3.45925e-01 -6.44945e-01 -2.01949e-01 6.50844e-01]

“Recorded” telemetry and data products

Realtime telemetry saved to nonvolatile memory
Sent only when requested by ground

“Data products” containing
detailed engineering data
science observations (images, spectra, ...)

®

EDL ;@,&

/7 minutes ;

Sky Crane Detail

Rover

Cruise
Stage , ’
Separanon’ ,
\ CBMD

L Separation
B ~
~ '
~
<

Entry
Interface

Heating
\ Peak
\ jﬁecelerauon /
) \ Parachute /
- ?\eploy
Hypersonic Astude 211 f

Aero-

Separation

Mobility

Deploy
Gelie) Flyaway

Touchdown

maneuvenng me. Entry + . Separation

Powered
Descent

Flyaway

e ¢ "Wt 2, L. ¥

Surface
. >) years

10:00 16:00

Typical sol on surface

— wake up and listen to Earth -

10:00 — 10:40 X-Band window with Earth; receive plan
— execute plan -

16:00 — 16:10 UHF PM window with MRO
17:05 - 17:19 UHF PM window with Odyssey
— rover asleep —

02:00 — 02:10 UHF AM window with MRO

— rover asleep -

03:22 - 03:33 UHF AM window with Odyssey
— rover asleep —

— wake up and listen to Earth -

Data Management Needs

store data to flash on generation

Cruise retrieve data from flash on ground command

EDL stream data to orbiters as it is being generated
commit data to flash before surface transition

store data to flash on generation

Surface retrieve data from flash in time for comm windows

Challenges

Processor speed |32 Mhz
Main memory |28 MByte (same as MER)

Implement a reliable storage mechanism
on unreliable (flash) medium

Predictable behavior
bounds on worst-case performance (time and memory)
even in the event of an unexpected reboot

wakeup and prep for AM comm windows

Examples
P support upto 250,000 products in system

Challenges

Processor speed |32 Mhz

Main memory |28 MByte (same as MER)

Implement a reliable storage mechanism
on unreliable (flash) medium

Predictable behavior
bounds on worst-case performance (time and memory)
even in the event of an unexpected reboot

wakeup and prep for AM comm windows

Examples
P overhead with 250,000 products in system

Why flash filesystems are hard

Asymmetry of write / erase

write page
erase_block

blocks
Bad blocks

Limited block lifetimes
must do wear-leveling

Challenges

Processor speed |32 Mhz
Main memory |28 MByte (same as MER)

Implement a reliable storage mechanism
on unreliable (flash) medium

Predictable behavior
bounds on worst-case performance (time and memory)
even in the event of an unexpected reboot

Challenges

Processor speed |32 Mhz
Main memory |28 MByte (same as MER)

Implement a reliable storage mechanism
on unreliable (flash) medium

Predictable behavior
bounds on worst-case performance (time and memory)
even in the event of an unexpected reboot

Hard deadlines!

Formal Methods!?

Filesystem specification

creat ()
open () __ use pre-/post- conditions
read () ,write() [PTE-P
lseek ()
mkdir ()
rmdir ()

“Reset-reliability”

filesystem shall remain consistent across an unexpected reboot

\

strengthen the spec to require
operations be atomic wrt reboot

Difficulties

A filesystem is a recursive data type /
requires reasoning about reachability (hard) >
VAN
TLA+ (Joshi)
Initial attempts ACL2 (Erickson)
VDM (Hu)
But

large semantic gap between spec and flight code
lack of available tools to bridge this gap

Filesystem reference implementation

(Holzmann)

1000 lines of C

Simpler

VS

6000 lines of flight code

assumes simple storage medium (volatile RAM)

not fault tolerant

Filesystem correctness

‘ ref.op(x,y) >’
choose op(x,y) : flight.op(x,y)
[inject fault in flight] @ o

r0 := flight.op(x, y)
rl := ref.op(x,y)
(@) assert rO==rl
(b) assert flight.state ~ ~ref.state

— tree equivalence

(c) assert flight.invariants()
\ includes space- and

wear-leveling checks

Filesystem correctness

‘ ref.op(x,y) >’
choose op(x,y) : flight.op(x,y)
[inject fault in flight] @ o

r0 := flight.op(x, y)
rl := ref.op(x,y)
(@) assert rO==rl
(b) assert flight.state ~ ~ref.state

— tree equivalence

(c) assert flight.invariants()
\ data structure

i invariants; properties
Golden Rule for testing not modeled in ref

if either (a) or (b) fails
strengthen (c) until it also fails

Randomized testing

Simple to set up and maintain
we used SPIN as a test driver (with unsound abstractions)
instrument with CIL to measure path coverage to evaluate heuristics

Easy to parallelize

Surprisingly effective

found many bugs that would not have been caught in system test

The filesystem caching bug
adding read cache to NVDS NVFS
exposed a latent bug in NVFS \
would have resulted in all file creations failing after NVDS

~80 sols on surface

Failures of the test program

Sol-217 anomaly scemario
latest file F is deleted
a bug in filesystem rebuild on boot — reboot —
caused a file to become corrupt (wrong size) new file G is created and
—> failed checksum reuses pages from F
resulted in safe mode (loss of | day) - reboot —

Sol-200 anomaly

catastrophic failure of flash memory resulted in filesystem unavailability
manager task did not handle situation gracefully

task that controls shutdown became blocked

required ground to force swap to backup computer

Randomized testing challenges
Overnight run returns many occurrences of the same bug

What to do when no more bugs are being found?

Less effective without a reference implementation

Randomized testing challenges
Overnight run returns many occurrences of the same bug

What to do when no more bugs are being found?

Less effective without a reference implementation

How do we climb the verification ladder
from randomized testing
to full functional verification?

Formal Methods & Ground Operations

> |50 Gbits of data returned by MSL so far

often >| Gbit in a single day

how do we analyze all this data?
anomaly investigations
trending reports
find smoking guns

Telemetry Analysis

current practice
ad-hoc scripts (python, perl, Excel macros)

hard to understand, maintain, debug

Telemetry Analysis

current practice
ad-hoc scripts (python, perl, Excel macros)

hard to understand, maintain, debug

Can we leverage formal methods!?

declarative rules
process telemetry 24 / 7
semantic querying to aid anomaly investigations

